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Abstract

Organisms that can learn about their environment and modify their behaviour appropriately during their lifetime are more
likely to survive and reproduce than organisms that do not. While associative learning – the ability to detect correlated
features of the environment – has been studied extensively in nervous systems, where the underlying mechanisms are
reasonably well understood, mechanisms within single cells that could allow associative learning have received little
attention. Here, using in silico evolution of chemical networks, we show that there exists a diversity of remarkably simple
and plausible chemical solutions to the associative learning problem, the simplest of which uses only one core chemical
reaction. We then asked to what extent a linear combination of chemical concentrations in the network could approximate
the ideal Bayesian posterior of an environment given the stimulus history so far? This Bayesian analysis revealed the
‘memory traces’ of the chemical network. The implication of this paper is that there is little reason to believe that a lack of
suitable phenotypic variation would prevent associative learning from evolving in cell signalling, metabolic, gene
regulatory, or a mixture of these networks in cells.
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Introduction

Here we evolve chemical networks in simulation to undertake

associative learning. We define learning as the process by which

information about the world is encoded into internal state (a

memory-trace) in order to behave more adaptively in the future.

Associative learning is learning of a relation between two types of

event. Remarkably, the most frequently found circuits consisted of

only one or two core chemical reactions responsible for learning,

the other reactions being involved in subsidiary functions such as

signal transduction. This is functionally simpler than the previ-

ously hand-designed biochemical circuits for classical conditioning

that require several chemical reactions to implement Hebbian

learning (a term which we use to refer to a mechanism that ensures

that event A co-occurring with event B results in a greater

probability that event B will occur given future presentations of A

alone [1,2]). Thus, this is a beautiful example of how evolution can

find elegant solutions.

Chemical kinetics is Turing complete and therefore any

computable mechanism for associative learning is theoretically

possible [3,4], however, this says nothing about which kinds of

chemical mechanisms for learning are likely to evolve. Here we use

in silico natural selection [5,6,7,8,9] to evolve chemical networks

that are selected on the basis of their ability to carry out various

associative learning tasks. Also known as genetic algorithms [10] or

evolutionary computation [11,12], the principle follows that of

selective breeding. An initial random population of chemical

networks is constructed. Each network is assessed for its quality as

defined by a ‘fitness function’ that maps quality to fitness. The next

generation is produced by allowing networks to replicate with

mutation (and crossover) in proportion to their fitness. This

process iterates for many generations, eventually producing higher

quality networks that are capable of solving the desired task. The

closest work to ours is the evolution of associative learning in

continuous recurrent neural networks [13].

Our simulation evolves an abstract chemistry; however unlike

many experiments with purely artificial chemistries [14,15] it was

designed to respect conservation of mass and energy, an essential

consideration for transferring the insights from in silico models to

chemical reality [16,17,18], which is our ultimate goal. Each

‘molecule’ consists of ‘0’ and ‘1’ atoms, and only the number of

digits (and not their sequence) determines the species’ identity. Any

interchange of building blocks between molecules was allowed to

happen in reactions. With the exception of the implicit decay

reactions, all the simulated chemical reactions are reversible.,

However, some reactions may be effectively irreversible because

the reaction rate in the backward direction is very low compared

to the reaction rate in the forward direction. For details of the

artificial chemistry model refer to the Methods section. Results

from a pilot study with simpler chemistry are described in

Supporting Information TextS1, part 1.

Traditionally there are two types of associative learning,

classical and instrumental conditioning, the former involves

passive observation of events, e.g. associating the sound of a bell

with the smell of food, and the later involves relating self-generated

actions and their consequences, e.g. learning that pressing a lever

produces food [19]. We developed tasks that evoke the classical

conditioning paradigm in psychology [20]. The network receives
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input from the environment (in the form of chemical boluses

externally introduced into the system) and produces output

(defined as the concentration of a particular chemical species

measured over a particular test-period). The chemical dynamics of

the system (the changes in concentration of chemical species)

describe the behaviour of the network according to its sensory

input.

In all the learning tasks, the chemical network had to learn to

anticipate the injection of a control chemical C, known as the

unconditioned stimulus UCS in the classical conditioning litera-

ture. Anticipation of C means to act in a manner that shows

knowledge that certain events can predict C. Anticipation can be

learned or innate. In our tasks it is necessary to learn to anticipate,

not just to evolve innate temporal expectations. All tasks involve

two possible conditions. In one condition the network should be

able to use another chemical S (stimulus pulse), i.e. the conditioned

stimulus CS, that reliably precedes C to predict the occurrence of

C. Prediction results in the production of an output chemical O -

the conditioned response CR - immediately after S is presented

but prior to C. If this condition has been properly inferred, output

chemical O should then be reliably elicited by the stimulus pulse S

alone, after pairing S with C. This describes the ‘‘associated’’

condition. In the other, ‘‘non-associated’’ condition, S cannot

theoretically be used to predict C. We therefore no not wish to see

a CR (i.e. no output O production) following S. Thus, in all cases

the network’s fitness depends on whether it has learned the

association between S and C by requiring it to produce an output

chemical after S only when it is reliably followed by C, but not

otherwise. There is no explicit training and testing phase in our

experiments. The network’s task is to respond appropriately as

quickly as possible.

Consider a possible real-world example of how such function-

ality may be adaptive. Imagine that C (UCS) is a toxin and that S

(CS) is a chemical that in some environments (but not others) can

predict that toxin. Imagine that a metabolically expensive anti-

toxin O (CR) can be synthesised to neutralise the toxin C. Then it

would be advantageous to use S to initiate the synthesis of anti-

toxin O in lieu of C in the environments in which S was predictive,

but not in those environments in which S was not predictive,

where instead the no O should occur, i.e. no production of anti-

toxin in response to S. All tasks pose variants of this fundamental

problem. The fact the network may find itself in either

environment within a lifetime means that it could not evolve the

simple strategy of sensitization where it always produces output

chemical O in response to S. We used five different tasks, designed

to provide a systematically more challenging associative learning

problem. A summary of the tasks, and the information required for

achieving maximal fitness on them (i.e. the simplest discrimination

that is sufficient for optimal performance), is given in Table 1. The

first two tasks do not require detection of a temporal correlation

between S and C, i.e. they can be solved without associative

learning, i.e. by sensitization/habituation alone. They demon-

strate that in restricted environments, information about associ-

ations between things can be equivalent to information about

simpler (lower-order) environmental features, such as the frequen-

cy of individual event types. However, the later three tasks are

designed such that they necessitate discriminations based on

observation of associations, e.g. discriminating environments in

which S and C are temporally correlated compared to environ-

ments in which they occur independently. Thus, the final three

tasks are true associative learning tasks that cannot be solved

without the capacity to observe associations and modify ones

behaviour accordingly.

Classical conditioning involves a wide range of different training

and testing regimes, e.g. Pavlovian conditioning [21], Blocking

[22], Backwards Blocking [23], overshadowing [19], etc. Typically

these paradigms show an unconditioned response to the control

(UCS). Above we have used a set of training and testing regimes

that do not explicitly require an unconditioned response (UCR) to

the UCS (control) molecule alone. In other words, we have

assumed that a straightforward chemical reaction exists, indepen-

dent of the network modelled, that is capable of producing an

UCR to the control molecule. An important aspect of classical

conditioning is extinction, a reduction in the conditioned response

CR when the conditioned stimulus CS (stimulus) is repeatedly

presented in the absence of the unconditioned stimulus UCS

(control). All the networks presented here show extinction, even

though they were not explicitly evolved on an extinction

paradigm, see Supporting Information TextS1 Part 2.

Clocked task
The times when the network must respond by producing an

output O when stimulus S is associated with chemical C were

constrained to regular ‘‘clock ticks’’ to make the task as easy as

possible for the networks. Because there is no noise, this is a simple

task as the very first input event (which is either S on its own, or S

followed by C) provides all the necessary information for

maximising fitness (Figure 1). The blue blobs show the time at

which the target output is required, i.e. when the target output

contributes to fitness. In the associated condition the target output

is high (1) and in the unassociated condition the target output is

low (0). At all other times it does not matter what the target output

is. This was intended to give evolution more leeway by imposing

fewer constraints. Even so, many evolved solutions maintained the

output concentration at low levels when the target output was not

evaluated.

Noisy clocked task
This task is identical to task 1., except that stimulus-control

pulse pairs occurred with a low (non-zero) frequency in the

unassociated environment and stimulus pulses without control

pulses occurred with a low (non-zero) frequency in the associated

environment. This produced ambiguity about the hidden state

(which environment the network is in) on the basis of observed

state variables (S and C pulses). Here, high fitness networks must

consider more of the past, since isolated input events are unreliable

indicators of the correct output chemical response (Figure 2.). A

successful chemical network should update its ‘belief’ in which

environment it is in on the basis of several observed associations,

not just one; in other words, it must integrate information over

time. For example, if we examine Figure 2., we see that the second

stimulus pulse is followed by a control pulse even in the

Author Summary

Whilst one may have believed that associative learning
requires a nervous system, this paper shows that chemical
networks can be evolved in silico to undertake a range of
associative learning tasks with only a small number of
reactions. The mechanisms are surprisingly simple. The
networks can be analysed using Bayesian methods to
identify the components of the network responsible for
learning. The networks evolved were simpler in some ways
to hand-designed synthetic biology networks for associa-
tive learning. The motifs may be looked for in biochemical
networks and the hypothesis that they undertake associa-
tive learning, e.g. in single cells or during development
may be legitimately entertained.

Evolving Bayesian Learning
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unassociated condition, and that the second stimulus pulse is not

followed by a control pulse in the associated condition. However,

the reader will notice that ‘cheating’ is possible in these two tasks

because in the associated condition C occurs more often in total

than in the unassociated condition, thus simply learning to

respond to S when C is on average higher in concentration is a

sufficient strategy. The temporal relation between S and C does

not need to be learned here. This simple solution is excluded in the

design of the next task.

Non-clocked associative task
In this task the timing of stimulus pulse and control pulse input

events was unconstrained, and, most importantly, the unassociated

and the associated environments received the same number of

control pulses, except that in the unassociatied environment they

were randomly distributed while in the associated environment

they reliably followed stimulus pulses. Therefore this task was

harder still, since it involved detecting relational aspects of inputs

rather than merely first-order statistics of control pulses like the

first two tasks (Figure 3).

AB-BA task
Like task 3., this task used unconstrained input timing with noise

and required relations between inputs to be detected. The

difference is that in the first environment, where the network

was required to keep the output chemical concentration low,

control pulses reliably preceded stimulus pulses (Figure 4) rather

than the other way around. In both cases S and C are associated,

but occur in a different temporal order. The network must

distinguish between these two kinds of temporal relationship.

Table 1. Five learning tasks of differing complexity on which chemical networks were evolved.

Task Typical Inputs by Environment Type Network required to determine:

Unassociated Associated

Clocked [Non-associative] S pulses alone SRC pulse pairs Do C pulses occur?

Noisy Clocked [Non-associative] S pulses alone SRC pulse pairs Do C pulses occur more often than S
pulses alone?

Non-Clocked [True Associative] S and C pulses with
independent timing

SRC pulse pairs Do C pulses tend to occur shortly after S
pulses?

AB-BA [True Associative] CRS pulse pairs SRC pulse pairs Do SRC pulse pairs tend to occur more
often than CRS pulses, over an extended
period?

2-bit Environment
[True Associative]

CRC, CRS and SRS pulse pairs SRC pulse pairs Do more SRC pulse pairs occur than any
other type of input event?

doi:10.1371/journal.pcbi.1002739.t001

Figure 1. Clocked task illustration. Above: ‘‘unassociated’’ condition. Below: ‘‘associated’’ condition. Stimulus (‘‘S’’) (CS) and control (‘‘C’’) (UCS)
pulses are shown as black and grey spikes respectively. Circles show (desired) target concentrations of the output chemical O (CR = high O). In the
unassociatied condition, input S is given and the output chemical must remain low during the period when the output is assessed (blue circles). In
the lower, associated condition, two inputs (S and C) are provided and the network must now produce a high output chemical concentration during
the period the output is assessed (blue circles). Note that input S signals the onset of the period that the output chemical must have a high
concentration, and input C signals the end of that period. The chemical network must use its knowledge of input C to determine its response to
input S.
doi:10.1371/journal.pcbi.1002739.g001

Evolving Bayesian Learning
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‘‘2-bit environment’’ task
The previous tasks described classes of stochastically-generated

environment. Hence, any one network could be evaluated only on

a sample of the environments typical of the task. By contrast, this

task was designed by hand to provide a significant challenge while

allowing exhaustive evaluation. The networks performance was

measured in four environments (all possible combinations of

stimulus-control pulse pairs). Maximal fitness required accumu-

lating relational data over multiple input events; the task was

specifically designed to exclude strategies that rely on the first or

most recent input event (Figure 5). Unlike the previous experi-

ments, the network must learn 2 bits of information because it

must distinguish one of 22 states (not just 21 states).

Results

We were able to evolve highly fit networks for each of the tasks

above. Dynamics of the best performing networks on the five

different tasks are shown in Figures 6–10 (for details of the

chemical networks see Supporting Information TextS1 Part 3).

Figure 2. Noisy clocked task illustration. Above: ‘‘unassociated’’ condition. Below: ‘‘associated’’ condition. Stimulus (‘‘S’’) pulses and control (‘‘C’’)
pulses are shown as black and grey spikes respectively. Circles show target output chemical concentration values. Note that the second input event,
at time t = 150, (in both conditions) is a noisy event, either a false positive or a false negative control chemical pulse occurs. The environments can be
distinguished on the fact that in the associated condition below the pulses co-occur with greater frequency than in the unassociated condition.
doi:10.1371/journal.pcbi.1002739.g002

Figure 3. Non-clocked task illustration. Above: ‘‘Unassociated’’ condition. Below: ‘‘associated’’ condition. Stimulus (‘‘S’’) and control (‘‘C’’) pulses
are shown as black and grey spikes respectively. Circles show target (desired) output chemical concentration values. Here, in the unassociated
condition both C and S pulses occur, but C pulses do not reliably follow S pulses unlike the associated condition. Higher fitness could be achieved by
detecting relational aspects of inputs, rather than simply observing the occurrence of control events as in the previous tasks.
doi:10.1371/journal.pcbi.1002739.g003

Evolving Bayesian Learning
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The networks display learning – changes in state which reflect the

statistics of their past inputs, and determine their response to input

boluses adaptively. Note that the network’s performance typically

increases over the evaluation period, suggesting that a long-term

memory-trace builds up over consecutive stimulus-control pairs.

The differences in task difficulty can also be observed on the

graphs. For the simplest, clocked, task one input event was enough

for the network to decide about the environment; but for the AB-

BA or the 2-bit task a much longer training period was required.

Figure 6 shows the performance in the Clocked task. The output

chemical O (molecule ‘01’) is shown in black. In the top

(unassociated) condition after the first presentation of stimulus S

and the absence of a control bolus, its concentration drops and

never returns. In the associated environment below, the output

chemical shows the opposite dynamics after the first paired input

of S and C. Figure 7 shows the evolved performance of a network

on the noisy clocked task. The output chemical is again shown in

black, and again in the unassociated task its concentration

gradually declines (except after a misleading S-C pair shown

during the second input event). In the associated environment the

black output chemical continues to be produced when the network

is stimulated with S. Figure 8 shows performance on the non-

clocked task where it is necessary to learn explicitly the temporal

correlation between S and C because in both tasks the overall

amount of S and C is the same. Again an evolved network is

successful in this because the black output chemical is only

produced in the associated condition below and not in the

unassociated condition above. Figure 9 shows the performance of

a network that successfully evolved to solve the AB-BA task. The

concentration of the output chemical in the lower condition is

higher on average than the output concentration in the upper

condition. The performance was only assessed during the second

half of the task and this is where the greatest difference in black

chemical output is seen. Figure 10 shows successful performance

on the 2-bit environment task with the black output chemical only

showing high concentration in the third condition.

Network structure
Having evolved approximately 10 networks capable of solving

each task, we ask, how do they work? The evolutionary algorithm

permitted increases or decreases in the number of chemical species

and the number of chemical reactions, see Methods. The smallest

evolved network required only two reactions, but the typical

number of reactions in an evolved network was 12 (mean 11.9,

median 12). A greedy pruning algorithm applied to the networks

revealed that most of these reactions were superfluous; typically

only 5 reactions (mean 4.7, median 5) were necessary to achieve a

fitness score within 10% of the entire network’s fitness. The

numbers given are for all tasks in aggregate; statistics for individual

tasks are not very different. Although we did not select explicitly

for simplicity, smaller networks emerged in the simulations.

Figure 11 below shows the core network motifs that were evolved

for associative learning, identified after pruning.

The second motif (Figure 11A, bottom) is the most commonly

evolved solution. It appeared as a solution to all the above tasks. We

analyse that in detail below in a case where it evolved in the best

network capable of solving the AB-BA task (the network is described

in detail in Supporting Information TextS1 part 3). The task in this

case is to produce output (species 11) when control pulses follow

stimulus pulses (SRC), but not to produce output chemical O when

control pulses precede stimulus pulses (CRS), see Figure 12.

In the SRC environment, a slowly decaying long-term memory

chemical LTM (chemical species ‘001’) reacts with the stimulus S

to produce output O and a fairly rapidly decaying short term

memory chemical STM (0001). Thus, output is produced in

response to the stimulus when the memory chemical is present:

011 stimulusð Þz001 long� term mem:ð Þ<

11 outputð Þz0001 short� term mem:ð Þ
ð1Þ

When the control pulse C occurs, it converts the short-term memory

chemical back into the long-term memory molecule, allowing the

Figure 4. AB-BA task illustration. Above: ‘‘CRS’’ condition. Below: ‘‘SRC’’ condition. Stimulus (‘‘S’’) and control (‘‘C’’) pulses are shown as grey
and black spikes respectively. Circles show target output values. This task spans a longer time period than the others, because it is noisier. In the CRS
condition C pulses typically precede S pulses, whereas in the SRC condition, S pulses typically precede C pulses. The chemical network must produce
a high output chemical concentration following the S pulse in the SRC condition but not in the CRS condition. The noise involves flipping of the
order of S and C pulses so that SRC pulses sometimes occur in the ‘‘CRS’’ condition and vice versa. The noisiness can be controlled.
doi:10.1371/journal.pcbi.1002739.g004
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LTM molecule to be reused again in the next pulse pair.

01 controlð Þz0001 short-term mem:ð Þ?001 long-term mem:ð Þ ð2Þ

Now consider how the same network must behave quite differently

in the CRS condition. Here C occurs before S so there is no STM

molecule for C to react with to produce LTM. This means there is

no LTM molecule for S to react with to produce output. Instead C

readily disintegrates:

01 controlð Þ?1z0 ð3Þ

and the disintegration product reacts with the output molecule thus

removing any output that might be produced in response to the

stimulus that follows:

1z11 outputð Þ?111 wasteð Þ: ð4Þ

Whilst reactions (3) and (4) are not shown in Figure 11, we note that

such ‘extra’ reactions are typical additions to the core motifs that

evolved. Each evolved network contains multiple such extra

adaptive reactions that help in various ways to control the dynamics

of the system.

This hypothesis for the mechanism of learning was tested by

modifying the concentration of the long-term and short-term

memory chemicals by manipulating their inflow and decay rates

and observing the response to stimulus pulses. We found that, as

expected, the LTM and STM molecules determined the

magnitude of output produced (Figure 13). Remarkably, this

explanation can be re-interpreted in the light of Bayesian

posteriors, i.e. ‘beliefs’ that the network has about which

environment it is likely to be in, according to the information

provided so far by the environment. To do this, we interpreted the

internal state of the network as encoding a Bayesian posterior, by

fitting a regression model from the chemical concentrations of the

Figure 5. 2-bit environment task illustration. Conditions from top to bottom: ‘‘CRC’’, ‘‘CRS’’, ‘‘SRC’’, ‘‘SRS’’. Stimulus (‘‘S’’) and control (‘‘C’’)
pulses are shown as grey and black spikes respectively. Circles show target output values. In this task the only condition in which the output chemical
should be high is where S pulses precede C pulses. Notice that we only assess the output during the second part of each condition, giving the
network some time to make a judgement about which condition it is in. This task was designed by hand to provide a significant challenge while
allowing exhaustive evaluation.
doi:10.1371/journal.pcbi.1002739.g005
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network at each point in time to the ideal Bayesian posterior of

being in the associated environment given the sensory history

encountered so far. If it is possible to fit such a regression model it

means that a linear combination of chemical species concentra-

tions encodes in a sense a near-optimal ‘belief’ about which

environment the network is in. We found it was indeed possible to

fit such a linear model for the above network, see Table 2.

Furthermore, the parameters of this model must correspond to

each species’ role in learning. Positive numbers signify chemical

species that are typical for the SRC environment, while negative

numbers indicate that these chemicals are more abundant in the

CRS environment. As expected, the largest positive posteriors

belong to the memory chemicals, and, of course, to the output

chemical (reactions 1–2); while large negative numbers indicate

the disintegration product and the waste chemical (reactions 3–4).

Many of the evolved networks used the motif described above.

There were a few more general features that repeatedly appeared

for all tasks. For example, the input (stimulus, control) and output

chemicals’ concentration typically decreased quickly, either by

spontaneous decay or by reactions that converted them to waste

products/memory chemicals. A long-term memory chemical

could be identified in most networks: this reacted with the

stimulus to produce output, and was generated only in the SRC

environment.

Apart from these features, the chemical background of learning

was diverse and highly specific to the task in question. In the

clocked and noisy clocked tasks only the SRC environment

contained control pulses, and this was habitually exploited by

converting the control directly to the long-term memory chemical

(network not shown in Figure 11). In the non-clocked task, many

Figure 6. Sample dynamics of an evolved network for the clocked task. Upper: ‘‘unassociated’’ condition. Lower: ‘‘associated’’ condition.
Black solid line shows output concentration; blue solid line shows stimulus concentration; green solid line shows control concentration. Dotted lines
show intermediate chemical concentrations. Circles indicate target output values for the network. Triangles show input boluses.
doi:10.1371/journal.pcbi.1002739.g006

Figure 7. Sample dynamics of an evolved network for the noisy clocked task. Upper: ‘‘unassociated’’ condition. Lower: ‘‘associated’’
condition. Black solid line shows output concentration; red solid line shows stimulus concentration; blue solid line shows control concentration.
Dotted lines show intermediate chemical concentrations. Circles indicate target output values for the network. Triangles show input boluses.
doi:10.1371/journal.pcbi.1002739.g007

Evolving Bayesian Learning
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of the networks used the fact that the output needs to be low after

the control arrives. The signal in itself was converted to output,

while control removed output. This resulted in a dynamics where

in the SRC environment, control removed the output of the

previous signal; in the case of randomly distributed control pulses,

there was no output available when control was added, so, it

inhibited the output of the following signal. The AB-BA task was a

very special problem and the networks evolved to solve it were

even more diverse than usual. In several cases the control was used

to inhibit output production, as in the CRS environment it

reliably preceded the signal. As the 2-bit task included more

environments, it was more difficult for the networks to use ‘‘tricks’’,

and they mostly used the mechanisms depicted on Figure 11. We

have evolved a few networks to be able to solve all tasks and the

tendency towards simplicity was even clearer in them: they

invariably used the most typical mechanism (Figure 11A, bottom)

that we have analysed above.

Discussion

Bayesian analysis
Bayesian statistics provides a valuable framework, not just for

statistical analysis of data, but for conceptualising how physical

systems can encode models of their environment and update those

models. The central concept in Bayesian statistics is that a ‘‘belief’’

can be modelled as a probability distribution; the rational way to

modify the belief in response to evidence can then be formally

codified. In order to incorporate cumulative evidence rationally

into a model of the environment, it is sufficient to apply Bayes’ rule

repeatedly over time, with the posterior probability after each

Figure 8. Sample dynamics of an evolved network for the non-clocked task. Upper: ‘‘unassociated’’ condition. Lower: ‘‘associated’’
condition. Black solid line shows output concentration; yellow solid line shows stimulus concentration; blue solid line shows control concentration.
Dotted lines show intermediate chemical concentrations. Circles indicate target output values for the network. Triangles show input boluses.
doi:10.1371/journal.pcbi.1002739.g008

Figure 9. Sample dynamics of an evolved network for the AB-BA task. Upper: ‘‘unassociated’’ condition. Lower: ‘‘associated’’ condition. Black
solid line shows output concentration; blue solid line shows stimulus concentration; purple solid line shows control concentration. Dotted lines show
intermediate chemical concentrations. Circles indicate target output values for the network. Triangles show input boluses.
doi:10.1371/journal.pcbi.1002739.g009

Evolving Bayesian Learning
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observation becoming the prior probability for the next observa-

tion, see [24] for an overview. This process is known as iterated (or

recursive) Bayesian inference.

The typical application of Bayesian statistics would (in effect) be

for the experimenter to apply Bayesian inference to their own

beliefs, beginning with some probabilistic belief about the system

and refining it by the observation of evidence. We turn this on its

head by considering, if the system itself were a rational observer,

what ‘‘beliefs’’ it should have regarding its environment and how it

should update them in response to evidence. A similar approach to

ours can be seen in [25]. We found that a Bayesian analysis

provides insight into understanding network function. Note that

there was no explicit pressure on the networks to perform Bayesian

reasoning. However, achieving a high fitness during evolution

required the networks to incorporate and integrate information

over time. Iterated Bayesian inference is the formal ideal of the

process of integrating cumulative evidence; hence, we have a

theoretical motivation for interpreting the network dynamics in

Bayesian terms.

We attributed ‘‘beliefs’’ to the networks by analytically deriving

the Bayesian beliefs (posteriors) of an ideal observer in a given task

(over a variety of time steps and environments), and fitting a

regression model from the network’s state to this ideal belief. (We

use a logistic regression model as the natural analogue of a linear

model for a range bounded between 0 and 1.) Hence, we

determined the maximum extent to which the network’s state can

be said to encode the correct posterior in a simple form. For

comparison purposes, we also performed this procedure on

networks that were not evolved on the task in question. This

means that the ‘‘belief’’ attributed to a network depended on the

task it was being observed on: ‘‘belief’’ in this context really means

‘‘most generous attribution of belief given the task’’.

The mean correlation between the fitted logistic regression

model and the analytic posteriors is extremely high (0.97–0.98) for

the highest-fitness evolved networks on both the noisy clocked

association task and the AB-BA task (Figure 14). The information

required to perform the noisy clocked task is relatively easy to

accumulate in a detectable form: for random networks, the mean

model/posterior correlation is fairly high (0.82). For the AB-BA

task, which requires accumulating more subtle information, the

quality of fit of the regression model for random networks is very

low (0.06) (Figure 14). Figure 15 shows the dynamics of an evolved

network’s best ‘‘belief’’ (the output of the regression model) over

time for a particular lifetime, compared to the ideal rational belief

(the posterior probability). Interestingly, the network evolved on

the ‘‘2-bit environment’’ task demonstrated information capture

on both the noisy clocked task (rho = 0.83) and the AB-BA task

(rho = 0.73). See Supporting Information TextS1, part 4 for other

example networks, including networks that were evolved on a

different task to the one they are being tested on.

The process of Bayesian inference is characterised by the

incorporation of relevant information into a system’s internal state.

This does not constrain the way in which a Bayesian posterior is

encoded into the state of a system; the encoding in principle could

Figure 10. Sample dynamics of an evolved network for the 2-bit environment task. From top to bottom: CRC, CRS, SRC and SRS
environments. Black solid line shows output concentration; yellow solid line shows stimulus concentration; blue solid line shows control
concentration. Dotted lines show intermediate chemical concentrations. Circles indicate target output values for the network. Triangles show input
boluses.
doi:10.1371/journal.pcbi.1002739.g010
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Figure 11. Chemical motifs for associative learning. (A) A long-term memory chemical could be identified in most networks: this reacted with
the stimulus to produce output, and was generated only in the ‘‘associated’’ environment. Top. A simple reversible reaction in which stimulus+slow
decaying memory-trace molecule produce output, and the control molecule regenerates the memory molecule for reuse. Bottom. Two almost
irreversible reactions allow an improvement on the previous motif because here the decay rate of the output chemical is made independent of the
decay rate of a short-term memory molecule, allowing decoupling of the control from the output molecule. (B) In several networks the overlap
between the signal and control initialized long-term memory production. Again, a single reversible reaction but with S and C reacting together. It
works because the control chemical decays quickly but the stimulus molecule decays slowly. Therefore stimulus and control molecules only co-occur
when control follows stimulus, and not when stimulus follows control.
doi:10.1371/journal.pcbi.1002739.g011
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be arbitrarily complex. However, our empirical results for the

evolved networks indicate that the existence of an encoding can be

demonstrated by a simple regression model.

It is worth observing that just because a system’s state contains the

relevant information to perform a task, this does not necessarily

mean that the system uses that information appropriately. For our

Figure 12. Reactions in the best performing chemical network in the AB-BA task. All reactions are reversible, arrowheads only indicate the
thermodynamically favoured direction. S- stimulus, C- control, O- output, STM- short-time memory-trace, LTM- long-term memory-trace. All species
decay and there is a low-rate inflow of molecule ‘001’. Blue and red lines correspond to the motifs on Figure 11. In the environment where stimulus
pulses are followed by control pulses, output and a short-term memory chemical are produced in response to the stimulus from the long-term
memory chemical; then, when the control pulse arrives, the memory chemical is regenerated from the short-term memory chemical.
doi:10.1371/journal.pcbi.1002739.g012

Figure 13. Manipulating the chemical network. Black solid line shows output concentration; blue solid line shows stimulus and purple solid line
shows control concentrations. Dotted lines show intermediate chemical concentrations. Triangles show input boluses. In the SRC environment (A)
high decay of any of the memory chemicals diminish the response; in the CRS environment (B), high inflow of any of the memory chemicals is
enough to produce output.
doi:10.1371/journal.pcbi.1002739.g013
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noisy clocked task, the dynamics of a randomly constituted network

usually encode the relevant information for task performance in a

nearly linear way, whereas random networks have a poor fitness

performance on the task. This is because in the artificial

environment for that task, the overall rate of control pulses differs

in the two different experimental conditions. To a first approxima-

tion, we can regard the two experimental conditions as providing

constant driving inputs to the system, but at different rates. Hence, if

a system’s gross dynamics depend on the rates of control pulse

inputs (which will be true for the majority of systems), then

observing the system’s state after interacting with one or other of our

task environments will readily reveal which environment the system

was exposed to. We will see below that this issue does not apply to

the more complex AB-BA task that requires genuine sensitivity to

stimulus pairing (see Table 1 for a comparison of the informational

requirements in the noisy clocked task and the AB-BA tasks).

There are important parallels here to liquid state machines [26,27]

and other reservoir machines [28] and to random projections [29] in

machine learning: information capture is not necessarily the

hardest part of information processing, and randomly constituted

systems can often accumulate information in a usable fashion. So,

the random networks store information about the rate of control

pulses in the environment (although not as much information as a

network evolved for the task). That information can be extracted

by an observer using a simple regression model, similar to reservoir

machine and random projection learning. However, the random

networks do not incorporate the machinery to translate the stored

information into an appropriate response: a high output following

a stimulus pulse when control pulses have occurred at a high rate

in the past, and a low output otherwise.

By contrast, we determine empirically that the AB-BA task

produces very different information dynamics to the noisy clocked

task. In the AB-BA task, the overall rate of control (and stimulus)

pulses is identical in the two different task environments. While

random networks can be assigned a logistic-model Bayesian

interpretation for the first task (i.e. a regression model can be fitted

to map from the network state to the current optimal Bayesian

posterior), the same is not true for the AB-BA task (see Supporting

Table 2. Coefficients of the regression model that multiply
each chemical species concentration to obtain the Bayesian
posterior prediction for the best performing chemical network
in the AB-BA task.

SRC environment CRS environment

Chemical Weight Chemical Weight

011 0.03 111 21.32

001 1.8 1 22.38

11 2.57 01 20.14

0001 1.5

0 0.81

Positive numbers indicate species that are more likely to have high
concentration in the SRC environments, while negative numbers belong to
species that are more prevalent in the CRS environment. The magnitude of the
weight relate to the significance of the chemical. The Bayesian interpretation is
consistent with our explanation for the learning mechanism (see text).
doi:10.1371/journal.pcbi.1002739.t002

Figure 14. Boxplot showing goodness of fit of a logistic regression model to the ideal Bayesian posteriors in 30 test environments
for the noisy clocked and AB-BA tasks. The degree to which a network’s state encodes the Bayesian posterior via a logistic model is shown for a
single evolved network and 30 random networks.
doi:10.1371/journal.pcbi.1002739.g014
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Information TextS1, part 4), where only the evolved networks

have a good logistic-model Bayesian interpretation. Note that to

distinguish the AB-BA environments, the network must respond

differently to a C pulse followed shortly by a S pulse than a S pulse

followed by a C pulse. The information necessary to distinguish

the environments optimally is the relative number of CS versus SC

pulses.

A nervous system is not necessary for learning. We have shown

that associative learning mechanisms implemented by well-mixed

chemical reactions can be discovered by simulated evolution.

What differences in principle, then, are there between neurons and

chemicals? The key difference between learning in neuronal

network and learning in our chemical networks is that in neuronal

systems generic learning mechanisms exist that are present at each

synapse, irrespective of the particular identity of the pre- and post-

synaptic neurons. For example, spike-time-dependent plasticity

(STDP) can be found between many neurons. This is possible

because neurons share the same genome, and this permits each

neuron to express the molecular machinery required for plasticity.

On top of this, specificity can be achieved through line labelling,

i.e. it is the physical pathway from stimulus to neuron A to neuron

B etc. that has meaning, and conveys reference. The capacity to

associate arbitrary events X and Y arises when a plastic synapse

exists between neurons that represent X and neurons that

represent Y.

In our chemical networks, however, there is no modular

distinction between chemical species that represent events and the

chemical reactions that implement learning. The chemical

network for associating X and Y by forming memory-trace M

cannot work separately to associate P and Q because of two

reasons: (i) the reactor is well mixed and the memory-trace M for

X and Y will interfere with the memory-trace M for P and Q (ii)

the molecule M will react with X and Y but it cannot without

modification react with arbitrary P and Q. In the neural system

neither of these constraints exists.

This has important consequences on the scaling properties of

neural or chemical systems for associative learning. Suppose that

the system needs to be able to learn three independent possible

associations (say, ARC, BRC and ARD). The weight (strength)

of each association needs to be represented independently in the

network, and an associative mechanism implemented to update

each weight.

In the neural system this is easy; the associative mechanism is a

set of molecules that are expressed in each synapse that

implements Hebb’s rule or some variant of that rule, which states

that events that co-occur have a higher probability of co-occurring

in the future. In neuronal systems the weights of the associations

are the synaptic strengths. Each neural connection contains the

molecular capacity to implement Hebb’s rule specifically between

distinct neurons. In the chemical system, however, each associative

mechanism will be a different chemical pathway, and the

pathways will need to be functionally similar while involving

species whose chemical properties are distinct (since if the species

are too similar, there will be crosstalk between the pathways). In

essence, it seems plausible that the chemical system will have to re-

implement associative learning independently for every possible

association.

We have described chemical networks in this paper that can

learn to associate one stimulus with another stimulus. An

important qualifier here is that they do not display generic

associative learning: the two stimuli that can be associated are

genetically specified. Of course, more sophisticated cellular

systems such as genetic regulatory networks may be able to

overcome the problems we have described. Also, the learning is

Bayesian Fit
C->S Environment

Bayesian Fit
S->C Environment

Figure 15. Best ‘‘belief’’ change over time in an evolved network for two paired lifetime runs of the AB-BA task. Upper: network
output. Lower: ideal Bayesian posterior (dotted line) and attributed network ‘‘belief’’ based on regression model from concentration values (solid
line). Vertical bars illustrate input event timing: dark grey for CRS events and light grey for SRC.
doi:10.1371/journal.pcbi.1002739.g015
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not independent of timing, but instead the ability of an evolved

network to undertake associative learning is greatest for environ-

ments where the period between successive stimulus-control pairs

resembles that period encountered during evolution, see Support-

ing Information TextS1, part 5).

We used in silico evolution to find small chemical networks

capable of carrying out various associative learning tasks. It is often

the case that evolution finds solutions that are much more concise,

elegant, and parsimonious than would be produced by deliberative

cognition. In fact, the simplest chemical network still capable of

associative learning consisted of only two chemical reactions. This

confirms that there is no reason in principle that associative learning

within a lifetime should be confined to multicellular organisms.

So why is the experimental evidence of associative learning in

single cells to date equivocal? We are only aware of one

experiment that addressed this question [30]. Todd Hennessey

showed that aversive classical conditioning occurs in Paramecia.

He trained a single paramecium to avoid an electric shock by

learning that vibration precedes it. The mechanisms underlying

such learning are not known, although it seems possible that

voltage gated Calcium channels [31,32] are involved, perhaps with

adenylate cyclase acting as a coincidence detector with cAMP

dependent state changes mediating memory as in Aplysia [33,34].

Similar studies have indicated that other single-celled organisms

may have the capacity to learn to associate light and electric shocks

[35,36] although a recent study on individual human immune cells

showed habituation but no conditioning [37]. Notice that the task

of learning a contingency within a lifetime is entirely different from

evolving to respond under an evolutionary regularity that B will

regularly follow A in all environments. Whilst there was a recent

report that such behaviour is observed in bacteria which anticipate

the decrease in oxygen following increase in temperature, these

bacteria did not learn to anticipate but rather they evolved to

anticipate [38]. Often this critical distinction is not made, resulting

in confusion between evolution and learning [39]. To see the

difference, note that no bacterium in the above experiment could

learn within a lifetime that in some environments increased

temperature predicts increased oxygen, whereas in other environ-

ments decreased temperature predicts increased oxygen. This

association was not learned by a single bacterium, instead, it is an

association that was discovered by evolutionary search by

populations of bacteria. The very ease with which populations of

bacteria and yeast can evolve to anticipate environmental changes

in laboratory evolution experiments suggests that it may simply not

have been necessary for individual single celled organisms to learn

to anticipate within a lifetime [40].

An important implication of our work is that the associative

mechanisms we have described may be active during development

in cells within a multicellular organism. It will be of interest to use

bioinformatics to examine whether the motifs in Figure 11 can be

found in regulatory networks involved in development. This paper

allows us to re-examine the possible function of simple chemical

motifs within an associative learning framework.

Methods

Artificial chemistry
In order to enforce conservation of atomic mass in the networks’

reactions, we used a combinatorial abstract chemistry for the

networks. Each simulated chemical species had a ‘‘formula’’

consisting of a string of digits representing chemical ‘‘building

blocks’’, and reactions were constrained to conserve building

blocks. These constraints were modelled using three different

abstract combinatorial chemistries: An ‘‘aggregate’’ chemistry,

where only the number of digits (and not their sequence) determined

the species’ identity, somewhat resembling inorganic chemistry with

atoms as building blocks. Any interchange of building blocks was

allowed to happen in reactions. A ‘‘rearrangement’’ chemistry,

where the sequence of digits characterized species, somewhat

resembling organic chemistry with atomic groups as building blocks.

Any interchange of building blocks was allowed to happen in

reactions. A ‘‘polymer’’ chemistry, where only ligation and cleavage

reactions could happen among chemical species, resembling

polymer reactions with monomers as building blocks.

Simulations of a simple aggregation chemistry provided

chemical networks with the highest fitness (Supporting Informa-

tion TextS1, part 6), thus, results in the main text refer to this

particular chemistry. Reactions were modelled reversibly. We

incorporated further thermodynamic constraints by assigning

‘‘free energy’’ values to chemical species; these constrained the

ratios between forward and reverse reaction rates. Each network

received an inflow of one particular chemical type (‘‘food’’), and

every chemical species exhibited first-order decay, as expected in a

flow reactor scenario. Note that although all the parameters of the

reaction networks – chemical species, chemical reactions, free

energy values, inflow rate of food and species decay rates – were

allowed to change during the evolutionary runs, each individual

network had its own fixed chemistry that stayed the same during

the learning trials. Therefore the difference between chemical

networks in the unassociated and associated environments could

only be induced by the different history of input boluses; these

must have modified the state of the network (the concentration of

different chemicals) so that it showed different behaviour when

presented with the stimulus chemical.

Encoding
Networks consisted of a number of chemicals and reactions, the

relevant characteristics of which were encoded genetically. See

Figure 16 for illustration.

Chemicals
Each abstract chemical species was associated with a number of

real-valued parameters: A chemical ‘‘potential’’, which affected

the thermodynamics of the system, an initial concentration, a

spontaneous decay rate (conceptualised as decay to inert waste

products), an inflow rate if this species was chosen as the network

‘‘food’’ (see below). In addition, chemical species were assigned a

binary ‘‘formula’’ string, which constrained how different species

could combine (see ‘‘chemistry’’ section).

Reactions
Reactions were represented as a list of one or two ‘‘Left Hand

Side’’ (LHS) species, a list of one or two ‘‘Right Hand Side’’ (RHS)

species, and a real- valued ‘‘favoured rate constant’’ (see below). The

variation operators used in evolution guaranteed that reactions

conserved mass and compositional elements (see below). Note that the

intrinsically favoured direction for the reaction was not determined

by the reaction’s encoding but by the chemical potential values of the

species involved. The ‘‘favoured rate constant’’ parameter of the

reaction determined the rate constant in the favoured direction; the

rate constant in the non-favoured direction was determined by the

chemical potential values of the species involved.

Input and output
The choice of which chemical species the network used as input,

output and ‘‘food’’ were under evolutionary control. Part of the

network encoding was an ordered list of species: the first species in
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the list functioned as inputs; the next species as output; the next

species as ‘‘food’’; and the remainder had no special environmen-

tal significance, see Table 3.

Variation
Network mutations were implemented as follows, based on a

mutation rate sigma: All real-valued parameters were mutated by

Gaussian noise, with reflection at the upper and lower parameter

limits. The standard deviation of the noise was scaled by the

product of sigma with the absolute size of the allowable range for

that parameter. With probability sigma * 5, the program

attempted to add a random new reaction to the network (see

‘‘adding new reactions’’). With probability sigma * 5, a uniformly

chosen reaction was deleted from the network. With probability

sigma, two elements of the input-output list for the network were

randomly swapped (most of the time, this involved swapping ‘‘non-

special’’ elements and had no functional effect).

Adding new reactions
When a mutation called for adding a new reaction to the

network, one of the following three possibilities was chosen

uniformly:

1. A reaction decomposing an existing chemical species into two

molecules. If this was impossible (i.e. the chosen species had a

‘‘1’’ or ‘‘0’’ formula), no reaction was added

2. A reaction composing two existing chemical species into a

single molecule. If this would produce ‘‘too long’’ a molecule, a

reaction of the third type was generated instead.

3. A reaction rearranging two existing chemical species into two

different species. This was modelled as composition followed by

decomposition.

In each case, the existing species were chosen uniformly and

formulas for the reaction products were generated according to the

current chemistry (see ‘‘chemistries’’). If a formula was generated in

this way that did not match a species already in the network, a new

species was generated with that formula and added to the network.

When a new reaction was added to the network, its ‘‘favoured rate

constant’’ parameter was initialised to a low value (uniformly in the

range [0, 0.1]) to allow for relatively neutral structural mutations.

Chemistries
Each chemical species in a reaction network was given a binary

string ‘‘formula’’ which constrained what products it could form

Table 3. Allowable range, initialisation range, and description for real-valued network parameters.

Chemical Species Parameter Range Description

Chemical potential 0–7.5 units Parameter affecting reaction rate constants

Initial concentration 0–5 units (initialised 0–2) Concentration of species at the start of a protocol simulation

Inflow (if food) 0–5 units (initialised 0–1) Inflow rate of the species if selected as the ‘‘food’’ species

Spontaneous decay 0–10 units (initialised 0–1) Decay rate of the species

Reaction Parameter Range Description

Favoured rate constant 0–60 units (initialised 0–0.1) Rate constant of the reaction in the thermodynamically favoured
direction (determined by potentials of reactants).

doi:10.1371/journal.pcbi.1002739.t003

Figure 16. Network genotype and its meaning. For explanation see text.
doi:10.1371/journal.pcbi.1002739.g016
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with other species. Reactions were always constrained so that the

total number of 0s on the reaction LHS was the same as the total

number of 0s on the RHS, and similarly for 1s. In addition, we

modelled three different string ‘‘chemistries’’, each with different

compositional rules, see Table 4.

1. A ‘‘polymer’’ chemistry, where composite formulas involved

only concatenation, e.g. 01+00«0100.

2. A ‘‘rearrangement’’ chemistry, where composite formulas

could have their binary elements in any order, e.g. 01+
00«0001 or 0010 or 0100 or 1000. Composition here was

implemented as concatenation followed by fair shuffling of

string characters.

3. An ‘‘agglomeration’’ chemistry, where only the total number of

0 s and 1 s in a formula (and not the order of them)

distinguished different species, e.g. 01+011«00111. Compo-

sition here was implemented as concatenation followed by

lexicographic sorting of string characters.

Initialising networks
Networks were initialised as follows. A small number of ‘‘seed’’

chemicals (by default, 4) with distinct formulas of length 3 were

added to the network. New chemical species, whether generated at

initialisation or due to adding a new reaction to the network

during initialisation or mutation, were initialised with uniformly

random parameters in the following ranges: potential [0–7.5],

initial concentration [0–2], food inflow [0–1], decay [0–1]. The

function to add a new reaction was called 20 times, thereby adding

an unpredictable number of new chemicals to the network. New

reactions, whether generated during initialisation or mutation,

were initialised with a uniformly random ‘‘favoured reaction

constant’’ in the range [0–0.1]. The input-output list for the

network was shuffled fairly.

Evolution
The networks were evolved using a non-generational genetic

algorithm (GA) similar to the Microbial GA [41]. A genetic

algorithm is the natural selection algorithm run in a computer

[10], specifically it is artificial selection in which an explicit fitness

function (phenotypic target) is defined, rather than allowing fitness

to emerge as the result of ecological interactions. In our case the

fitness function rewards chemical networks capable of the kind of

associative learning we require. The basic algorithm was as

follows:

Initialise a population with a given number of networks

For a fixed number of iterations,

Pick two different networks from the population (for

spatial evolution, choose two neighbours)

Evaluate both networks

Replace the worse-performing network with a mutated

copy of the better-performing network

Simulation
All reactions were modelled using reversible deterministic mass

action kinetics (apart from the implicit decay reactions which are

irreversible). It is clearest to explain this scheme by example.

A single reversible reaction can be conceptually split into two

parts, so that

AzB<C (with forward rate constant r1 and reverse

rate constant r2)

is conceptually equivalent to the composition of two reactions

AzB<C (with rate constant r1)

and

C?AzB (with rate constant r2)

The rate at which a reaction takes place, in our simulation, is set

equal to the product of the concentrations of those species on its

left-hand side, multiplied by its rate constant. The reaction

consumes its reactants at this rate and generates its products at this

rate. The overall rate of change of a species’ concentration due to

explicitly-modelled reactions is equal to the sum of the rates at

which it is generated (over all reactions) minus the sum of the rates

at which it is consumed (over all reactions). Spontaneous decay (at

a rate lX for chemical X) contributes an additional {lX X term to

this sum, and inflow (at rate m for the food chemical F) contributes

an additional m term to F’s rate of change. Hence, a system

consisting only of the reaction

AzB<C(r1,r2)

(with A as the food chemical) has the following differential

equations:

dA

dt
~Cr2{ABr1{lAAzm

dB

dt
~Cr2{ABr1{lBB

dC

dt
~ABr1{Cr2{lCC

For computational efficiency, simulations during evolution used

Table 4. Composition and decomposition operators for three different types of network chemistry.

Chemistry Composition Decomposition

Polymer ‘‘Gluing’’ one string to the end of the other
(concatenation), e.g. 011+01R01101

String division at a uniformly chosen location guaranteed to respect
maximum string length of products (splitting), e.g. 0110101R0110+101

Rearrangement Concatenation, followed by order randomisation of
characters (shuffling), e.g. 011+01 (via 01101)R10011

Splitting of shuffled string, e.g. 0110101 (via 1011001)R101+1001

Aggregation Concatenation, followed by lexicographic reordering of
characters in product string (sorting), e.g. 011+01 (via
01101)R00111

Splitting of shuffled string, followed by sorting of each product string.
e.g. 0001111 (via 1011001) (via 101+1001)R011+0011

doi:10.1371/journal.pcbi.1002739.t004
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Euler integration with a step size of 0.01 time units. Input boluses

were modelled as discontinuous jumps in concentration at the

given time steps. These simulations were qualitatively validated

after evolution using a variable step-size Runge-Kutta ODE

solver.

Task protocols
Networks were simulated on chemical protocols, with each

protocol consisting of a time series of input boluses, and a time

series of target values for the network output. Note that for most

time steps, the input bolus values were zero and the target output

values were ‘‘don’t care’’. The exact details of the protocol inputs

and targets varied from task to task.

Fitness evaluation
For every task, networks were simulated on a number of

protocols, and the (instantaneous) concentration of the designated

network output chemical compared to the protocol target for every

time step. The fitness of a network was set equal to the negative

mean square difference between these two quantities averaged

over all protocols and all time steps (ignoring time steps where a

‘‘don’t care’’ target was specified). In order to provide a reliable

fitness comparison, when two networks were chosen for compe-

tition during evolution, they were evaluated on the same set of

protocols. Additionally, the protocols for different experimental

conditions within the same task were deliberately matched to be

similar, so that network response to the experimental condition

could be measured as directly as possible.

Task descriptions
Initial experiments indicated that randomly generating proto-

cols during evolution results in very noisy fitness comparisons, with

little fitness gradient for evolution to climb. To avoid this problem,

for each task we generated fixed ‘‘training data’’ and saved it to

file. Networks were evaluated during evolution on their perfor-

mance on the training data set. For most tasks, the training data

set was a file consisting of 10 randomly generated protocols. A

number of tasks were devised requiring the detection of different

environmental features by the networks. Some of these tasks were

‘‘clocked’’, i.e. pulses were constrained to only occur at predeter-

mined regular ‘‘clock tick’’ times, and some were not.

Clocked task
This task constrained B boluses to a regular ‘‘clock tick’’

schedule every 100 time steps and had two experimental

conditions. There was only a 0.5 probability of a chemical B

bolus on a given clock tick. In the ‘‘associated’’ condition, a

chemical B bolus was always followed 20 time steps later by a

chemical A bolus. In the ‘‘unassociated’’ condition, chemical A

boluses never occurred. A single protocol featured both experi-

mental conditions, with identical B boluses in each condition. The

desired behaviour for the network was: upon receiving a pulse of

chemical B, output either zero (in the ‘‘unassociated’’ condition) or

one (in the ‘‘associated’’ condition) for 20 time steps afterwards.

Clocked task with noise
This was identical to the previously described task except that

there was a small (p = 0.1) probability of ‘‘noise’’ occurring at each

time step with a chemical B bolus. Noise consisted of a B bolus

being followed by an A bolus in the ‘‘unassociated’’ condition or a

B bolus followed by no A bolus in the ‘‘associated’’ condition.

Within a single protocol, the occurrence of noise was matched

between experimental conditions.

Non-clocked task
This task had two experimental conditions and involved boluses

at random intervals. In both conditions, pulses of chemical B

occurred at random intervals uniformly in the range [100, 300]. In

the first (‘‘associated’’) condition, a pulse of chemical B was

followed shortly afterwards (20 time steps) by a pulse of chemical

A. In the second (‘‘unassociated’’) condition, pulses of chemical A

occurred independently of B, at random intervals uniformly in the

range [100, 300]. Within a single protocol, pulses of chemical B

were identical.

AB-BA task
This task, featuring two experimental conditions, was specifi-

cally designed to involve a non-trivial accumulation of informa-

tion. Within this task, input ‘‘events’’ occurred randomly at a low

rate (0.025 per time step) with a refractory period of 50 time steps

between events, over a total period of 2000 time steps. Each event

consisted of either a pulse of chemical A followed closely (20 time

steps later) by a pulse of chemical B, or vice versa. In the first

experimental condition (‘‘ARB’’), events were 75% likely to be

‘‘ARB’’ pulses and 25% likely to be ‘‘BRA’’ pulses, and vice versa

for the second (‘‘BRA’’) experimental condition. The desired

output behaviour was to respond to a ‘‘B’’ pulse with a low output

in ‘‘ARB’’ environments and a high output in ‘‘BRA’’

environments. Note that this task was both noisier than the other

tasks and involved a longer evaluation period (to allow the noise

some time to average out).

2-Bit environment task
Unlike the other tasks, every environment in this task was

designed by hand. The intention was to construct a range of

radically different environments such that both short- and

medium- term network memory-traces would be required to

attain maximum fitness. The inspiration was loosely drawn from

the concept of the ‘‘radical envelope of noise’’ [Jakobi, 1998].

Input pulses (boluses) in this task always occurred in closely-

separated pairs, although the second bolus in a pair did not have to

contain the same chemical as the first bolus. The pulse pairs

occurred at regular intervals of 100 time units each. Each

experimental condition was characterised by a ‘‘typical’’ pulse pair

(ARA, ARB, BRA or BRB). In addition to the ‘‘typical’’ pulse

pair corresponding to the experimental condition, every protocol for

this task also had a ‘‘noise’’ pulse pair. There were in total 4 protocols

(one for each pulse pair type), each containing 4 experimental

conditions, for a total of 16 different input series. A single input series

had the following structure: First, a pulse pair corresponding to the

protocol’s ‘‘noise’’ pair. Next, three ‘‘signal’’ pulse pairs all of the

‘‘typical’’ type for that experimental condition. Next, a ‘‘probe’’ pulse

pair (see below). Next, another ‘‘noise’’ pulse pair of the protocol’s

‘‘noise’’ type. Last, a final ‘‘probe’’ pulse pair. ‘‘Probe’’ pulse pairs

consisted of a pulse of ‘‘B’’ chemical followed by either a pulse of ‘‘A’’

chemical (in the BRA environment) or a pulse of ‘‘B’’ chemical (in

other environments). The desired network behaviour was to produce

a low output for 10 time steps prior to each ‘‘probe’’ pulse pair,

followed by either a high output (in the BRA environment) or a low

output (in other environments) for 20 time steps. Errors in the BRA

environment were weighted three times as heavily as errors in the

three other environments.

Network connection density
We calculate the number of reactions per effective chemical

species in a network by first excluding any species which do not

take part in reactions (this is possible if all reactions featuring a
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particular species are lost from a network by structural mutation).

We then simply calculate the mean number of distinct reactions

each remaining species is involved in.

To investigate the effects of different genetic encoding factors on

network connection density, we conducted 10 evolutionary runs

on the 2-bit environment problem in each of 4 encoding

variations. These were:

1. A benchmark case with maximum formula length 4, 2 symbols

in the chemical alphabet, and the aggregation chemistry.

2. A variation of the benchmark case with maximum formula

length 6.

3. A variation of the benchmark case with 4 symbols in the

chemical alphabet.

4. A variation of the benchmark case using the rearrangement

chemistry.

For all these runs, we recorded the effect of every mutation on

both fitness and also the number of reactions per chemical species.

Bayesian interpretation of evolved networks
Our method is as follows. We imagine an ideal Bayesian

reasoner, equipped with knowledge of the statistics of the different

network task environments. For each input train, at each point in

time, we calculate what subjective probability the reasoner should

assign to the possibility that the input train up to that point came

from an ‘‘associated’’ environment. This establishes what the ideal

Bayesian posterior would be at each point in time for each input

train. If a network’s chemical concentrations somehow encode this

time-varying Bayesian posterior in all environments, then it would

seem reasonable to attribute a Bayesian interpretation to the

network. For the purposes of this paper, we will skirt over the

complexities introduced by the non-dissipation of information in

smooth continuous dynamical systems. In principle, the state of

our simulated networks will usually contain all information about

their historical inputs, because information can be stored in

arbitrarily small differences in concentrations. However, in

practice this information will be destroyed by noise.

Calculating ideal posteriors
Calculation of the ideal posteriors for our environments is

straightforward. A random variable X will represent the type of

environment: either 1 (‘‘associated’’) or 0 (‘‘unassociated’’).

Another random variable Y(t) will represent the train of input

boluses up to time t. The ideal posterior probability of being in the

‘‘associated’’ environment after observing an input train y is

P(X~1DY (t)~y)~
P(Y (t)~yDX~1)P(X~1)

P(Y (t)~Y )

where

P(Y (t)~y)~P(X~1)P(Y (t)DX~1)zP(X~0)P(Y (t)~yDX~0)

The prior P(X = 1) was set equal to the proportion of ‘‘associated’’

environments in the network training sets, i.e. 0.5. The probabil-

ities P(Y(t) = y|X) were calculated as follows. In the environments

we analysed in this way, Input trains were organised into ‘‘events’’:

a bolus of one or other input chemical, followed possibly at a set

short interval by another bolus. The time between input events

always exceeded the inter-spike interval within an event. The

timing of events in an input train provided no information about

the type of environment. Hence, events can be extracted from an

input train and treated as a discrete process. ‘‘Associated’’ and

‘‘unassociated’’ environments correspond to Bernoulli processes

with ‘‘associated’’ (BRA) and ‘‘unassociated’’ (B alone, for the

noisy clocked task, or ARB for the AB-BA task) events. Thus, the

posterior P(X|Y(t)) can be calculated by counting the total number

of associated and unassociated events in Y(t).

P(Y (t)DX~1)~(p1)nz(1{p1)m

P(Y (t)DX~0)~(p0)nz(1{p0)m

where n and m are the number of ‘‘associated’’ and ‘‘unassociated’’

events in Y(t), and p1 and p0 are the probabilities of an ‘‘associated’’

event in the ‘‘associated’’ and ‘‘unassociated’’ environments

respectively. This gives

P(X~1DY (t)~y)~
(p1)nz(1{p1)m

(p1)nz(1{p1)mz(p0)nz(1{p0)m

which can be attached to a time series at the appropriate points

after events have occurred.

Matching posteriors to network state
We use a straightforward logistic regression model to match

network concentrations to Bayesian posteriors. Given a concen-

tration vector x, a weight vector w and a bias value b, the model is

f (x,w,b)~
1

1ze{b{Sx,wT

where Sx,wT is the scalar product of x and w. Note that the output

of this function is bounded between 0 and 1 like a probability value

(this would not be the case for a linear regression model). The idea

is that we can investigate the degree to which a rational Bayesian

belief is encoded transparently in the network’s state. We expect

that at time t, having observed an input history Y(t),

f (xt,w,b)&P(X~1DY (t))

To determine appropriate model parameters, we randomly

generate 200 environments (100 ‘‘associated’’ and 100 ‘‘unasso-

ciated’’), and run the evolved network in those environments.

Weights w and bias b are set to minimise mean square error over

all environments and time steps, using Levenburg-Marquadt

optimisation. No attempt was made to regularise the parameters

or otherwise avoid overfitting, since the model has relatively few

parameters. For comparison, 200 random networks (produced by

random initialisation followed by 200 mutations) were tested in the

same way.

Supporting Information

Text S1 Supporting information file.

(DOCX)

Author Contributions

Conceived and designed the experiments: SM VV PH CF. Performed the

experiments: SM VV PH CF. Analyzed the data: SM VV PH CF.

Contributed reagents/materials/analysis tools: SM VV PH CF. Wrote the

paper: SM VV PH CF.

Evolving Bayesian Learning

PLOS Computational Biology | www.ploscompbiol.org 18 November 2012 | Volume 8 | Issue 11 | e1002739



References

1. Fernando C, Liekens AML, Bingle LEH, Beck C, Lenser T, et al. (2008)
Molecular circuits for associative learning in single-celled organisms. J Roy Soc

Interface 6: 463–9.

2. Gandhi N, Ashkenasy G, Tannenbaum E (2007) Associative Learning in

biochemical networks. J Theor Biol 249: 58–66.

3. Magnasco MO (1997) Chemical kinetics is Turing Universal. Phys Rev Lett 78:

1190–1193.

4. Hjelmfelt A, Weinberger ED, Ross J (1991) Chemical implementation of neural

networks and Turing machines. Proc Natl Acad Sci U S A 88: 10983–10987.

5. Goldstein R, Soyer OS (2008) Evolution of the Taxis Responses in Virtual

Bacteria: Non-Adaptive Dynamics. PLoS Comput Biol 4: e10000084.

6. Parter M, Kashtan N, Alon U (2008) Facilitated Variation: How Evolution

Learns from Past Environments to Generalize to New Environments. PLoS
Comput Biol 4: e1000206.

7. Bray D (2003) Molecular Networks: The Top-Down View. Science 26: 1864–
1865.

8. Bray D, Lay S (1994) Computer simulated evolution of a network of cell-
signaling molecules. Biophys J 66: 972–977.

9. Paladugu SR, Chickarmane V, Deckard A, Frumkin JP, McCormack M, et al.
(2006) In silico evolution of functional modules in biochemical networks. Syst

Biol 153: 223–235.

10. Holland JH (1975) Adaptation in Natural and Artificial Systems. Ann Arbor:

University of Michigan Press.

11. Fogel DB (2006) Evolutionary Computation: Toward a New Pholosophy of

Machine Intelligence. Piscataway, NJ: Wiley-Interscience.

12. Baeck T, Fogel DB, Michalewicz ZM (1997) Handbook of Evolutionary

Computation New York: Taylor and Francis Group.

13. Phattanasri P, Chiel HJ, Beer RD (2007) The dynamics of associative learning in

evolved model circuits. Adapt Behav 15: 377–396.

14. Bagley RJ, Farmer JD, Fontana W. (1992) Evolution of a Metabolism. In:
Langton CG, Taylor C, Farmer JD, Rasmussen S, editors. Artificial Life II,

Proceedings. Santa Fe: Addison-Wesley.

15. Fontana W, Buss LW (1994) What would be conserved if ‘the tape were played

twice’? Proc Natl Acad Sci U S A 91: 757–761.

16. Fernando C, Rowe J (2007) Natural Selection in Chemical Evolution. J Theor

Biol 247: 152–167

17. Fernando C, Rowe J (2008) The origin of autonomous agents by natural

selection. Biosystems 91: 355–373.

18. Vasas V, Fernando CT, Santos M, Kauffman SA, Szathmáry E (2012) Evolution
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